skip to main content


Search for: All records

Creators/Authors contains: "Allison, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Changes to migration routes and phenology create novel contact patterns among hosts and pathogens. These novel contact patterns can lead to pathogens spilling over between resident and migrant populations. Predicting the consequences of such pathogen spillover events requires understanding how pathogen evolution depends on host movement behaviour. Following spillover, pathogens may evolve changes in their transmission rate and virulence phenotypes because different strategies are favoured by resident and migrant host populations. There is conflict in current theoretical predictions about what those differences might be. Some theory predicts lower pathogen virulence and transmission rates in migrant populations because migrants have lower tolerance to infection. Other theoretical work predicts higher pathogen virulence and transmission rates in migrants because migrants have more contacts with susceptible hosts.

    We aim to understand how differences in tolerance to infection and host pace of life act together to determine the direction of pathogen evolution following pathogen spillover from a resident to a migrant population.

    We constructed a spatially implicit model in which we investigate how pathogen strategy changes following the addition of a migrant population. We investigate how differences in tolerance to infection and pace of life between residents and migrants determine the effect of spillover on pathogen evolution and host population size.

    When the paces of life of the migrant and resident hosts are equal, larger costs of infection in the migrants lead to lower pathogen transmission rate and virulence following spillover. When the tolerance to infection in migrant and resident populations is equal, faster migrant paces of life lead to increased transmission rate and virulence following spillover. However, the opposite can also occur: when the migrant population has lower tolerance to infection, faster migrant paces of life can lead to decreases in transmission rate and virulence.

    Predicting the outcomes of pathogen spillover requires accounting for both differences in tolerance to infection and pace of life between populations. It is also important to consider how movement patterns of populations affect host contact opportunities for pathogens. These results have implications for wildlife conservation, agriculture and human health.

     
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. Sea cucumbers (Holothuroidea) are a diverse clade of echinoderms found from intertidal waters to the bottom of the deepest oceanic trenches. Their reduced skeletons and limited number of phylogenetically informative traits have long obfuscated morphological classifications. Sanger-sequenced molecular datasets have also failed to constrain the position of major lineages. Noteworthy, topological uncertainty has hindered a resolution for Neoholothuriida, a highly diverse clade of Permo-Triassic age. We perform the first phylogenomic analysis of Holothuroidea, combining existing datasets with 13 novel transcriptomes. Using a highly curated dataset of 1100 orthologues, our efforts recapitulate previous results, struggling to resolve interrelationships among neoholothuriid clades. Three approaches to phylogenetic reconstruction (concatenation under both site-homogeneous and site-heterogeneous models, and coalescent-aware inference) result in alternative resolutions, all of which are recovered with strong support and across a range of datasets filtered for phylogenetic usefulness. We explore this intriguing result using gene-wise log-likelihood scores and attempt to correlate these with a large set of gene properties. While presenting novel ways of exploring and visualizing support for alternative trees, we are unable to discover significant predictors of topological preference, and our efforts fail to favour one topology. Neoholothuriid genomes seem to retain an amalgam of signals derived from multiple phylogenetic histories.

     
    more » « less
    Free, publicly-accessible full text available July 12, 2024
  3. Abstract

    Species engage in mutually beneficial interspecific interactions (mutualisms) that shape their population dynamics in ecological communities. Species engaged in mutualisms vary greatly in their degree of dependence on their partner from complete dependence (e.g., yucca and yucca moth mutualism) to low dependence (e.g., generalist bee with multiple plant species). While current empirical studies show that, in mutualisms, partner dependence can alter the speed of a species' range expansion, there is no theory that provides conditions when expansion is sped up or slowed down. To address this, we built a spatially explicit model incorporating the population dynamics of two dispersing species interacting mutualistically. We explored how mutualisms impacted range expansion across a gradient of dependence (from complete independence to obligacy) between the two species. We then studied the conditions in which the magnitude of the mutualistic benefits could hinder versus enhance the speed of range expansion. We showed that either complete dependence, no dependence, or intermediate degree of dependence on a mutualist partner can lead to the greatest speeds of a focal species' range expansion based on the magnitude of benefits exchanged between partner species in the mutualism. We then showed how different degrees of dependence between species could alter the spatial distribution of the range expanding populations. Finally, we identified the conditions under which mutualistic interactions can turn exploitative across space, leading to the formation of a species' range limits. Our work highlights how couching mutualisms and mutualist dependence in a spatial context can provide insights about species range expansions, limits, and ultimately their distributions.

     
    more » « less
  4. Ongoing environmental changes alter how natural selection shapes animal migration. Understanding how these changes play out theoretically can be done using evolutionary game theoretic (EGT) approaches, such as looking for evolutionarily stable strategies. Here, we first describe historical patterns of how EGT models have explored different drivers of migration. We find that there are substantial gaps in both the taxa (mammals, amphibians, reptiles, insects) and mechanisms (mutualism, interspecific competition) included in past EGT models of migration. Although enemy interactions, including parasites, are increasingly considered in models of animal migration, they remain the least studied of factors for migration considered to date. Furthermore, few papers look at changes in migration in response to perturbations (e.g. climate change, new species interactions). To address this gap, we present a new EGT model to understand how infection with a novel parasite changes host migration. We find three possible outcomes when migrants encounter novel parasites: maintenance of migration (despite the added infection cost), loss of migration (evolutionary shift to residency) or population collapse, depending on the risk and cost of getting infected, and the cost currency. Our work demonstrates how emerging infection can alter animal behaviour such as migration. This article is part of the theme issue ‘Half a century of evolutionary games: a synthesis of theory, application and future directions’. 
    more » « less
    Free, publicly-accessible full text available May 8, 2024
  5. Abstract

    Herbivores shape plant invasions through impacts on demography and dispersal, yet only demographic mechanisms are well understood. Although herbivores negatively impact demography by definition, they can affect dispersal either negatively (e.g., seed consumption), or positively (e.g., caching). Exploring the nuances of how herbivores influence spatial spread will improve the forecasting of plant movement on the landscape. Here, we aim to understand how herbivores impact how fast plant populations spread through varying impacts on plant demography and dispersal. We strive to determine whether, and under what conditions, we see net positive effects of herbivores, in order to find scenarios where herbivores can help to promote spread. We draw on classic invasion theory to develop a stage‐structured integrodifference equation model that incorporates herbivore impacts on plant demography and dispersal. We simulate seven herbivore “syndromes” (combinations of demographic and/or dispersal effects) drawn from the literature to understand how increasing herbivore pressure alters plant spreading speed. We find that herbivores with solely negative effects on plant demography or dispersal always slow plant spreading speed, and that the speed slows monotonically as herbivore pressure increases. However, we also find that plant spreading speed can be hump shaped with respect to herbivore pressure: plants spread faster in the presence of herbivores (for low herbivore pressure) and then slower (for high herbivore pressure). This result is robust, occurring across all syndromes in which herbivores have a positive effect on plant dispersal, and is a sign that the positive effects of herbivores on dispersal can outweigh their negative effects on demography. For all syndromes we find that sufficiently high herbivore pressure results in population collapse. Thus, our findings show that herbivores can speed up or slow down plant spread. These insights allow for a greater understanding of how to slow invasions, facilitate native species recolonization, and shape range shifts with global change.

     
    more » « less
  6. Abstract

    We present new radial velocity measurements from the Magellan and the Anglo-Australian Telescopes for 175 previously known and 121 newly confirmed globular clusters (GCs) around NGC 5128, the nearest accessible massive early-type galaxy atD= 3.8 Mpc. Remarkably, 28 of these newly confirmed GCs are at projected radii>50(≳54 kpc), extending to ∼130 kpc, in the outer halo where few GCs had been confirmed in previous work. We identify several subsets of GCs that spatially trace halo substructures that are visible in red giant branch star maps of the galaxy. In some cases, these subsets of GCs are kinematically cold, and may be directly associated with and originate from these specific stellar substructures. From a combined kinematic sample of 645 GCs, we see evidence for coherent rotation at all radii, with a higher rotation amplitude for the metal-rich GC subpopulation. Using the tracer mass estimator, we measure a total enclosed mass of 2.5 ± 0.3 × 1012Mwithin ∼120 kpc, an estimate that will be sharpened with forthcoming dynamical modeling. The combined power of stellar mapping and GC kinematics makes NGC 5128 an ongoing keystone for understanding galaxy assembly at mass scales inaccessible in the Local Group.

     
    more » « less